QReferate - referate pentru educatia ta.
Referatele noastre - sursa ta de inspiratie! Referate oferite gratuit, lucrari si proiecte cu imagini si grafice. Fiecare referat, proiect sau comentariu il poti downloada rapid si il poti folosi pentru temele tale de acasa.



AdministratieAlimentatieArta culturaAsistenta socialaAstronomie
BiologieChimieComunicareConstructiiCosmetica
DesenDiverseDreptEconomieEngleza
FilozofieFizicaFrancezaGeografieGermana
InformaticaIstorieLatinaManagementMarketing
MatematicaMecanicaMedicinaPedagogiePsihologie
RomanaStiinte politiceTransporturiTurism
Esti aici: Qreferat » Referate matematica

Baze ortogonale si ortonormate








Baze ortogonale si ortonormate



Definitia. 1. Fie V un spatiu vectorial Euclidian. Vectorii x,yV se numesc ortogonali daca produsul lor scalar este nul. O submultime S V se numeste ortogonala daca vectorii sai sunt ortogonali doi cate doi, adica <v,w>=0, v,w S, v w. O multime ortogonala se numeste ortonormata daca fiecare element al sau are norma egala cu unitatea.

Propozitia 2 Fie E o multime ortogonala dintr-un spatiu euclidian V formata

din elemente nenule. Multimea E este liniar independenta. Daca in plus, dimV=n, atunci orice multime ortogonala care contine n elemente nenule este o baza a lui V.


Fie V un spatiu vectorial Euclidian si B= V o baza in V. B este ortonormata daca si numai daca: <ei, ej>= , adica 1 daca i=j sau 0, altfel,

unde simbolul se numeste simbolul lui Kronecker.


Propozitia 3. Fie V un spatiu Euclidian cu dimV=n. Daca B= este o baza ortogonala a lui V si v V cu v=, atunci avem ca: xi=<v,ei> / <ei, ei>.

In particular, daca B este o baza ortonormata, atunci xi = <v, ei>.


Coordonatele xi=<v, ei>, i=, ale vectorului v se numesc coordonate euclidiene.


Definitia 4. Fie V un spatiu vectorial Euclidian. Fie v,w V, v,w 0. Vectorul se numeste proiectia vectorului v pe w iar numarul se numeste marimea algebrica a proiectiei vectorului v pe w.


Propozitia 5. Daca V este un spatiu vectorial Euclidian complex de dimensiune n

si B= este o baza ortonormata, atunci <v,w>=, unde xj=<v,ej>, yj=<w,ej>. In particular, ||v||2 = .

Propozitia 6. Fie V un spatiu Euclidian si W o submultime nevida a sa. Multimea este subspatiu vectorial al lui V.


Propozitia 7. Fie V un spatiu vectorial Euclidian de dimensiune n. Exista in V o baza

ortonormata B= .




loading...



Nu se poate descarca referatul
Acest referat nu se poate descarca

E posibil sa te intereseze alte referate despre:


Copyright © 2020 - Toate drepturile rezervate QReferat.ro Folositi referatele, proiectele sau lucrarile afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul referat pe baza referatelor de pe site.
{ Home } { Contact } { Termeni si conditii }

Referate similare:







loading...


Cauta referat